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SUMMARY 
The convergence properties of an iterative solution technique for the Reduced Navier-Stokes equations are 
examined for two-dimensional steady subsonic flow over bump and trough geometries. Techniques for 
decreasing the sensitivity to the initial pressure approximation, for fine meshes in particular, are investigated. 
They are shown to improve the robustness of the relaxation process and to decrease the computational work 
required to obtain a converged solution. A semi-coarsening multigrid technique that has previously been 
found to be particularly advantageous for high-Reynolds-number (Re) flows with flow separation and with 
highly stretched surface-normal grids is applied herein to further accelerate convergence. Solutions are 
obtained for the laminar flow over a trough that is more severe than has been considered to date. Sufficient 
axial grid refinement in this case leads to a shock-like reattachment and, for sufficiently large Re, to a local 
‘divergence’ of the numerical computations. This ‘laminar flow breakdown’ appears to be related to an 
instability associated with high-frequency fine-grid modes that are not resolvable with the present modelling. 
This behaviour may be indicative of dynamic stall or of incipient transition. The breakdown or instability is 
shown to be controllable by suitable introduction of transition turbulence models or by laminar flow control, 
i.e. small amounts of wall suction. This lends further support to the hypothesis that the instability is of a 
physical rather than numerical character and suggests that full three-dimensional analysis is required to 
properly capture the flow behaviour. Another inference drawn from this investigation is that there is a need 
for careful grid refinement studies in high-Re flow computations, since coarser grids may yield oscillation-free 
solutions that cannot be obtained on finer grids. 
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1. INTRODUCTION 

Numerical solutions to the full Navier-Stokes (NS) equations typically require considerable 
computational resources in order to accurately solve fluid flow problems that are of current 
interest. For  this reason, in many studies sufficient grid refinement has not been possible. In recent 
years, it has been shown by Rubin and co-workers that for a large class of flow problems the full 
NS equations can be approximated, with negligible loss in accuracy, by the Reduced 
Navier-Stokes (RNS) system, for which only selected viscous terms have been omitted. The 
primary advantage of the RNS approximation is improved computational efficiency, i.e. fewer 
iterations and less storage; this enables very fine mesh calculations to be considered. By using a n  
appropriate co-ordinate system, in which the omitted diffusion terms can be shown to be 
negligible, a variety of flows involving strong viscous-inviscid interaction, axial flow separation, 
shock interaction and  upstream influence have been computed with the RNS model. The 
ellipticity of the equations is characterized by inviscid (acoustic) pressure interaction rather than 
by axial viscous diffusion. This is reflected in the formulation of an unconditionally stable line 
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relaxation solution procedure presented in several earlier studies; see e.g. Rubin’ and Rubin and 
Reddy.’ This iterative procedure uses marching sweeps, from inflow to outflow, to systematically 
decrease the error of the globally stored pressure field. The velocities are regenerated during each 
sweep. This algorithm has been applied to the computation of several incompressible, sub- 
sonic/transonic and supersonic steady flows with strong interaction and/or upstream influence by 
Rubin, Khosla and co-workers. 

The convergence rates of the relaxation procedure slow down markedly with fine axial meshes 
and for large-Re flow; the solutions are typically very sensitive to grid stretching and distribution 
in the direction normal to the shear layer or surface boundary layer. Standard full-coarsening 
multigrid techniques for convergence acceleration have not been successful for viscous flows with 
highly stretched boundary layer meshes. An effective multigrid technique for such grids was 
developed in Reference 3 by the present authors and was used to obtain considerable enhancement 
of the convergence of the basic relaxation algorithm. The technique applies the multigrid 
philosophy only in the streamwise direction and is termed a semi-coarsening multigrid method. 

As is the case with all iterative procedures for non-linear equations, the relaxation scheme is also 
sensitive to the assumed pressure field that is used to start the calculations. A poor initialization of 
the pressure will increase the computational effort required to obtain a converged solution and, for 
severe flow conditions and geometries, may even lead to divergence. In the present study, 
computationally economical strategies are sought whereby convergence can be further acceler- 
ated or the relaxation made significantly more robust by improvement of the initial pressure field 
approximation used to begin the iterative calculation process. The strategies include the 
introduction of temporal relaxation, preliminary inviscid flow computation and interpolation of 
coarse-grid calculations. 

The accelerated RNS pressure relaxation scheme is used to investigate the flow over a smooth 
bump and a trough under more severe conditions than previously reported. For these cases, as 
discussed in Reference 3, divergence of the numerical iterations can be encountered with fine 
streamwise meshes. Theoretical analysis and the reporting of similar phenomena for a sine-wave 
bump geometry4 lead to speculation that the ‘instability’ is of a physical nature. In the present 
study, this ‘breakdown’ is more thoroughly investigated on very fine meshes. The effects of a 
transition turbulence model and that of flow control with boundary layer suction applied in the 
neighbourhood of the instability, which typically occurs near the reattachment point of the 
laminar reversed flow, are examined for fine meshes and with the semi-coarsening multigrid RNS 
procedure. 

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

The RNS equations for steady, two-dimensional, compressible flow, written in conservation form 
and in a sheared Cartesian co-ordinate system (t, q), are given as follows: 

continuity 

x-momentum 

y-momentum 
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constant stagnation enthalpy 

T+-ML Y-1 [u2 + ( U + Y ~ U ) ~ ]  =constant =H,; 2 

equation of state and laminar viscosity relationship 
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(4) 

Equations (1)-(5) are given in dimensionless, primitive variable form. M ,  is the free-stream 
Mach number and Re is the Reynolds number based on free-stream conditions and some reference 
length. The shearing transformation is particularly useful for the smooth bump and trough 
geometries and also simplifies the application of the boundary conditions. The transformation 
from Cartesian (x, y) to sheared coordinates (5 ,  q)  is given by 

t=x,  tl = Y - Yb(4. (6) 

u= V-ybu .  (7) 

The Cartesian normal or y-component of velocity V is related to the transformed velocity u by 

In (6) and (7), yb(x) defines the body surface and y, the slope of the surface. 
Inflow boundary conditions are specified on u, u, p and p ,  and an outflow boundary condition is 

required only for p .  In the q-direction, one boundary condition is required for each of u and p, and 
two for u. For the geometries discussed in this paper, at the inflow the conditions u = 1, u = 0, p = 1 
and p = p ,  = ~ / Y ( M , ) ~  are prescribed for ally, except that u(y =O)=O. For the trough geometry, u 
and u at the inflow x = 1 are prescribed from a boundary-layer-type marching computation with 
the RNS equations from x = 0 to x = 1, with the axial pressure gradient term explicitly set to zero. 
For all the present cases, the outflow condition on pressure was p,=O.  In the q-direction, the 
boundary conditions applicable for the geometries considered herein are u = 0 and u = 0 at q = 0, 
and u = 1 and p = 1 at q = qmax. The RNS approximation, equations and boundary conditions are 
discussed more completely in several papers; see e.g. References 1-3. 

3. NUMERICAL DISCRETIZATION AND RELAXATION SCHEME 

The mechanism in the RNS equations that provides acoustic or upstream influence is the coupling 
between the streamwise pressure gradient term in the ‘axial’ momentum equation and the axial 
convection term in the ‘normal’ momentum equation. Axial flow diffusion as well as all diffusion 
terms in the normal momentum equation (3) are assumed to be negligible; therefore the equations 
contain only convective and pressure axial flow derivatives. These are first order with respect to 
the streamwise coordinate 5 so that solutions can, in principle, be obtained by marching in the 
streamwise direction with prescribed initial conditions. However, for well-posedness of the initial 
value problem, it is known that only a portion (wp,) of the pressure gradient term can be retained. 
The factor w is given by 

w=min {f(M,), 11, f(M,)=YM52/C1 +(Y- 1)M521, (8) 
where M ,  is the Mach number of the streamwise velocity component u. 

In order to retain the full elliptic behaviour, the pressure gradient differencing must reflect the 
boundary value character associated with subsonic flow regions. Rubin’ has shown that the 
required pressure gradient discretization can be arrived at with a new form of flux vector splitting 
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that depends somewhat on the assumed form of the energy equation. For constant stagnation 
enthalpy, w is given by (8) and the pressure gradient splitting is given by 

w(P<)h + ( - O) ( p c ) e ,  

where ( P ~ ) ~  is the ‘hyperbolic’ portion of the pressure gradient, which is backward differenced and 
reflects a positive flux eigenvalue, and ( p r ) ,  is the ‘elliptic’ portion of the pressure gradient, which is 
forward differenced and reflects a negative flux eigenvalue to allow for upstream propagated 
waves or influence. In particular, for incompressible flow p s  is completely forward differenced. This 
was first shown numerically by Rubin and Lin6 with a linear stability analysis. The interpretation 
of this differencing has been discussed with reference to a staggered grid in earlier studies.’ Rubin 
has also shown that cell averaging of w will improve the accuracy of the pressure gradient 
dis~retization.~ For the convective terms, <-derivatives are upwind differenced to first- or second- 
order accuracy. This follows directly from the eigenvalue analysis5 and reflects the characteristic 
domain of dependence. For attached flows, this implies backward differencing of these terms. For 
reversed flow regions, w=O and these convective terms are omitted (FLARE approximation) or 
are forward differenced. 

The continuity equation is discretized about (i,j-1/2), the x-momentum equation about ( i ,  j) and 
the y-momentum equation about ( i ,  j + 1/2). All q-derivatives are represented with second-order 
accurate two- or three-point central differences. 

The discretized system leads to a set of coupled non-linear equations for u, u, p and p .  The 
solution operator Sh applied here is of the iterative line relaxation type. The equations are written 
at a given streamwise station (l =constant line, indexed by i) and are solved to a prescribed level of 
accuracy before proceeding to the next downstream station. The quantities having the index (i) 
represent the unknowns at the station i. The pressure pi is eliminated from the momentum 
equations, in favour of the density and the velocities, with the aid of the constant stagnation 
enthalpy condition (4) and the equation of state (5).  The non-linear terms are quasi-linearized to 
second order about the previous local iterate (values initially taken from the i- 1 station or the 
previous global iteration). The resulting linear system is inverted by a standard LU decompo- 
sition. The computed unknowns are used to update the previous iterate and the inversion can be 
repeated until local convergence is achieved. At any station i, the downstream pressure pi+ 
appearing in the equations is unknown. This leads to a global iteration process. The equations are 
marched downstream, with pi+ prescribed from the previous global iteration. The pressure is 
then updated by the computation at i+ 1. This process is repeated until convergence is achieved; 
i.e. the change in the pressure field from iteration to iteration is reduced to a prescribed tolerance. 
For unseparated flows (and for separated flows when the FLARE approximation is used for the (- 
direction convective term in the <-momentum equation), the algorithm requires storage of only 
the pressure field; the velocities are generated during each marching sweep. If upwind or flux 
vector splitting5 differencing is used for separated flows, the velocities are stored in the separation 
region only. It should be noted here that numerical information from the flow at any downstream 
location propagates upstream only one mesh width per global iteration. This is typical of line 
relaxation smoot hers. 

The stability and convergence properties of the global relaxation procedure have been 
investigated in previous studies. This analysis shows that the asymptotic convergence factor or 
spectral radius of the global iteration procedure is 1 - 0[(A</qM)’], where q M  is the normal extent 
of the subsonic flow region. This shows that for very fine meshes in the <-direction and/or large qw 
(both of which are frequently necessary to resolve flows with strong interaction), the convergence 
process, though stable, slows significantly. 

The present authors have applied the multigrid technique to significantly accelerate con- 
vergence of the global pressure relaxation p roced~re .~  The multigrid technique rapidly decreases 
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the error on a given grid by solving related problems on coarser grids, on which it is relatively 
inexpensive in terms of computational work. It was shown in Reference 3 that in order to 
successfully implement the multigrid method for highly stretched grids normal to the body surface, 
a semi-coarsening algorithm that uses the multigrid idea in only the streamwise direction is 
necessary. 

During the line relaxation procedure, the coupled quasi-linearized equations at each marching 
station are solved for all flow variables. This local inversion can be repeated to obtain local 
convergence of the non-linear discrete equations; however, this process is computationally 
expensive. Moreover, it has been found that local iteration does not significantly improve global 
convergence. Local non-linear convergence can be specified during the final global iterations in 
order to satisfy the exact non-linear discretized equations. In most cases, however, converged 
solutions of the quasi-linearized discrete system are sufficiently accurate and far less expensive. 

4. INITIALIZATION IMPROVEMENT 

The cases considered in this section are: (i) the flow over a sine-wave bump of height 0.025 at 
Re = 100 000 and (ii) the flow over a trough of depth d = 003 at a Reynolds number of 80000. The 
solution to the flow over a sine-wave aerofoil at zero incidence using the RNS equations was 
obtained by Ramakrishnan and R ~ b i n . ~  The solution to the second problem using the RNS model 
was first obtained by Reddy.’ In an earlier paper, Himansu and Rubin3 used this case as a model 
problem to demonstrate the efficiency of the semi-coarsening multigrid acceleration technique. 
For those computations, the initial approximation for the pressure field was always a uniform 
distribution corresponding to the free-stream value. 

In the present work, the effect of initial approximation on the convergence behaviour is 
examined. The motivation for this study arises from the extreme sensitivity of the convergence to 
the initial guessed pressure value, as found in earlier calculations for high-Re separated flows. For 
the computations at higher Re values and for more severe body geometry and finer grids, the 
calculations even fail to complete a single relaxation pass when free-stream conditions are initially 
assumed. This is a common difficulty with relaxation methods or iterative fluid dynamic 
computations. The usual method of circumvention is to first compute the flow for a lower Re 
and/or less severe body geometry (with free-stream conditions as the initial guess). This converged 
solution becomes the initial approximation for a more severe problem. The drawback of such a 
continuation procedure is the additional computational time required or the storage of a ‘starting 
solution’ for a given class of flows. This is particularly inefficient if several intermediate- 
Relgeometry solutions are required. This drawback is extremely limiting when the flow 
computation is part of an aerodynamic design process. 

In this study, three simple techniques to economically extend the Re and body geometry range 
for computations started with uniform flow initialization are examined. For one application, we 
examine the flow over a sine-wave bump of maximum height 0.025 at Re = 1OOOOO. The Reynolds 
number is based on free-stream velocity and unit length. The Reynolds number based on the bump 
height is 2500. The geometry consists of a flat plate y, = 0 from x = 0-5 to x = 0 followed by a sine- 
wave profile 

y ,  = 0.2511 + sin (2nx - n/2)] 

from x =O to x = 1, and finally another flat plate segment from x = 1 to x = 25. A uniform step size 
in the (-direction of 0.0125 was prescribed. The minimum grid spacing normal to the wall was 
0.001 with 121 points and a linear stretching factor of 1.07. As described in Section 3, local 
iterations are to be avoided except during the last few global iterations. For the test case, when the 
pressure is initialized with the free-stream value and no local iterations are performed, the 
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0.06 - 

calculations fail at a station just beyond the separation point during the first global pass. Figures 1 
and 2 display the computed skin friction parameter and pressure coefficient respectively up to the 
point of divergence. Attention is now focused on three techniques that overcome this difficulty. 

The first strategy is the familiar one of underrelaxation. The particular form used here is the 
introduction of ‘temporal terms’ into the governing equations. The temporal terms have the form 
of the time derivatives in the conservation equations for unsteady flow, so that the governing 
equations now appear as the ‘time-consistent’ RNS equations. This is a naturally stable method of 
allowing the effect of the initialization to damp out. These ‘time derivatives’ are removed when the 
solution has evolved sufficiently. The time derivatives are approximated by a backward difference, 
and the value of the ‘temporal step size’ At is used to control the degree of underrelaxation. The 
value of the underrelaxation parameter At may vary with space as well as with global iteration 

regular Ilne-relaxatton. 1 st global 
o wtth tlme termr.  nd global 

8.0 4 o \wlth tlme terms. nd global 5.0 
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Figure 1. Sine-wave bump: skin friction 
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Figure 2. Sine-wave bump: pressure coefficient 
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number. Large value of At correspond to little or no underrelaxation, while At = O  results in total 
underrelaxation, i.e. the local solution does not evolve at all. The important difference in this 
strategy as compared to the use of a time-dependent scheme is that the quasi-linearized velocities 
required at the 'previous time level', at any station, are not obtained from the previous global 
iteration but from the previous station. Thus the temporal terms act to lessen the change in 
velocities and density from one station to the next. Further, these terms are introduced only in 
regions of flow separation and therefore do not require global storage of the velocities. 

The solution computed during the second global iteration with At = 10 is also shown in 
Figures 1 and 2. The solution is now stable, and although the separation region extends to the 
downstream boundary during the first global pass, it is much reduced during the second; see 
Figure 1. During succeeding global passes, the separation region further diminishes and the time 
term can be phased out. Use of the large value At = 10 is possible since the assumed velocity values 
at both the previous and current time levels, at each station (i), are taken to be the computed values 
at the previous station (i- 1). This is equivalent to quasi-linearizing about the previous station 
when local iteration is not performed. In this way, the strong convective influence of the attached 
flow is rapidly propagated downstream. This is in contrast to consistent time-dependent 
procedures, for which many small time steps are generally required in order to relax from such 
severe initial conditions. These procedures also requiTe full global storage of the velocities. 

The second technique consists of approximately computing the inviscid flow past the same 
geometry, and using this solution to initialize the pressure field for the RNS computations. For 
large-Re flows with moderate separation, the pressure field is close to the inviscid pressure field 
and, as we recall, the primitive variable RNS formulation only requires an initial guess for the 
pressure field. Full Navier-Stokes iterative solvers would require initial approximations for the 
velocities as well. The inviscid approximation can be computed by using the RNS code with u = 1 
as the inflow condition and by replacing the no-slip condition at q=O with the <-momentum 
equation and appropriate reflection conditions to simulate the injection velocity values. The 
Reynolds number can be maintained at a finite large value since the viscous terms will be 
negligible; however, Re can also be set to an arbitrary large value if required. A few inviscid global 
iterations are usually sufficient to establish a reasonable pressure field, since it is the 
viscous-inviscid interaction that typically slows convergence. Alternatively, any fast efficient 
inviscid flow solver may be used to obtain the pressure field. It may be noted that a completely 
converged inviscid solution may not be as effective as a partially converged one. This is due to the 
fact that the displacement effect of the viscous flow smooths out large surface curvature regions of 
the body. These geometric effects will be a feature of the converged pressure field of the inviscid 
portion of the flow. 

Figures 3 and 4 display the solution computed during the first viscous flow global sweep, after 
nine inviscid global iterations. It is seen that the separation region is very small and does not lead 
to the problems seen with the uniform pressure field. During succeeding global iterations, the 
separation region gradually enlarges to its converged value. 

The third technique discussed here takes advantage of the fact that often computations that 
break down due to poor initialization can be successfully carried out with exactly the same 
initialization but on sufficiently coarse grids. An approximate solution is obtained to the problem 
on such a coarse grid and is interpolated as an initialization onto the grid on which the solution is 
desired. If the first grid is relatively too coarse to make interpolation useful, a hierarchy of grids 
may be used, with a quick approximate solution on each grid being interpolated as the 
initialization for the immediately finer grid. Such a process forms a natural part of the Full 
MultiGrid algorithm. However, this was not used in Reference 3, where calculations were always 
started on the finest grid. Figures 3 and 4 also show the solution computed during the first global 
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Figure 3. Sine-wave bump: skin friction 

iteration on the fine grid after initialization with the pressure computed on a coarser grid. The 
coarse grid was formed by selecting alternate <=constant lines of the fine grid, and the computed 
pressure was linearly interpolated in the t-direction onto the fine grid. It is seen that the 
calculations have proceeded smoothly through the separation region. Converged solutions for this 
flow are not displayed here, as they are not of primary interest in the discussion. 

The techniques for improvement of the initial guess have merit not only in severe cases where 
the line relaxation would otherwise break down, but also in more moderate cases where the 
relaxation would not fail but would require many global iterations to converge to within a 
prescribed tolerance. The advantage of these techniques for the latter flows is the computational 
work saved in achieving the converged solution. To illustrate this we consider the flow over a 
trough of depth 003 at Re= 80000 based on unit length. The Reynolds number based on trough 
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-Oeo4 - 
-0.08 

depth is 2400. The trough is assumed to begin at x = 0. The computation is carried out from x = 1 
to x = 4. A boundary layer computation from x = 0 to x = 1 provides the inflow conditions at x = 1. 
The grid used is the same as in the sine-wave bump case. The trough geometry, centred at x = 2-5, is 
given by 

y, = - d sech [4(x - 2.5)], 

where d is the depth of the trough. The first pressure iterates with and without preliminary inviscid 
global iterations are compared in Figure 5. Also shown is the converged solution, as a basis for 
judging how close the iterates are to the desired solution. It is seen that use of a few (six) 
preliminary inviscid iterations significantly moves the pressure field towards the final solution. 
This may also be seen from the residual norm in the two cases, which is shown plotted against 
computational work (in units of global iterations) in Figure 6. 
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Figure 7 and 8 display a similar gain produced by use of coarse-grid computations interpolated 
to the fine grid. 

5. LAMINAR SEPARATION ‘BREAKDOWN 

Multigrid-accelerated calculations were reported in Reference 3 for a trough with d=003 at 
Re=XO000. A more severe case was then considered for the present study. A solution was 
attempted for d = 0.06 and Re = 100000. A converged solution was not obtainable for this problem 
when a sufficiently fine grid was prescribed. It is believed that the reason for this failure lies not in 
the multigrid algorithm or the line relaxation process but in the physics of the flow. 

Figure 9 depicts the skin friction parameter for converged solutions with axial step sizes 
A t  = 3/144 and A t  = 3/192. Upwind differencing of the streamwise convective term in the 
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streamwise momentum equation was used in both these cases. Nearly identical solutions are 
obtained when the FLARE approximation is used for this term. The streamwise extent of the 
separation region is much greater than in the case of the d = 0.03 trough. Noteworthy is the ‘dip’ in 
the curves prior to reattachment and the steepening of the dip with decreasing mesh size. Figure 10 
shows the coefficient of pressure cp versus axial distance for the same cases. A converged solution 
for a slightly finer streamwise mesh of size A t  = 3/200 is shown in Figures 11 and 12. Both skin 
friction and pressure display oscillations within the flow reversal region, near reattachment. 
Further refinement of the streamwise grid results in a total breakdown of the computation. No 
converged solution was obtainable. The streamwise step size should be small enough to resolve 
most features of the flow; however, the instability could not be resolved with further grid 
refinement. A physical laminar flow breakdown is suggested. The mesh in the ?-direction is 

( A Y ) ~ , ,  = 0.0002 

0.70 A x - 3 / 1 4 4 ,  1 4 5 * 1 2 1  points 
0.80 

c 0.40 

0.30 

0.20 

0.10 

0.00 

-. lo 

0 

-.20 ~ , , , , , , , , , , , , , , 1 , * , , , , , , , 1 , , , ,  

1 .o 1 .s 2.0 2.5 3.0 3.5 4.0 

X 

Figure 9. Trough skin friction parameter 
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Figure 11. Trough: skin-friction parameter 

adequately fine, as shown by the solution in Figure 13, where halving of the wall value of Aq did 
not produce any noticeable change in the solution. 

The breakdown cannot be attributed to poor initialization of the calculations since converged 
solutions on coarser grids were used as the initial guesses. Additionally, the calculation on a 
fine axial grid was started with free-stream conditions, and the solution proceeded normally 
for a while. The breakdown was observed only after the solution had evolved sufficiently. 
Ramakrishnan and Rubin4 have described a similar phenomenon in the flow past a sine-wave 
aerofoil at zero incidence and sufficiently high Re. Their solutions were obtained with the time- 
consistent form of the RNS equations and display similar abrupt reattachment. In the same 
manner as in the present study, the dip in skin friction increases as the mesh is refined, and no 
solution could be obtained for finer meshes. Additional evidence suggesting a physical mechanism 
for the breakdown comes from the calculations of Bender and K h ~ s l a , ~  who used a direct solver 
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Figure 13. Trough: skin friction on fine y-grids 

for the steady-state form of the streamfunction-vorticity system for the flow past the sine-wave 
aerofoil. They too found that at sufficiently high Re, the dip in surface shear increases significantly 
as the mesh is refined. Moreover, when temporal terms were added, the solution became 
unbounded for all but very large values of At. 

Experimental results have not been obtained for the trough configuration; the flow separation 
for this case may be expected to have the same qualitative features as the marginal separation 
encountered behind the rounded leading edge of aerofoils at small or zero incidence and 
sufficiently high Re. The latter case is known to often involve a transitional separation bubble with 
abrupt turbulent reattachment and has been extensively studied during the past few years. It has 
been shown by several authors (see e.g. Smith and Elliott’) that the transition to turbulence is 
controlled by local features of the flow. In a recent paper, Davis et aL9 have found excellent 
agreement with experiment for flow over an aerofoil with a small transitional separation bubble. 
They applied a correlation proposed by Roberts to specify the transition point in the reversed flow 
region. According to the correlation as presented in Reference 9, the transition Reynolds number 
based on surface length from the separation point, for negligible free-stream turbulence level, is 
about 0.58 x lo5. If the correlation were applicable in the case of the present trough calculations, 
this would put transition within the separation bubble at approximately x = 2.6. 

One theoretical approach to the stability of marginal separation may be found in a paper by 
Smith and Elliott.* That study and that of Davis et aL9 were prompted in part by renewed interest 
in laminar flow control and general drag reduction techniques. Order-of-magnitude and 
perturbation analysis of the boundary layer indicates that a non-linear accumulation resulting in a 
‘shock-like’ reattachment structure can occur in separated flows. The upstream part of the 
structure has a strong reversed motion with an abrupt but smooth adjustment to strong forward 
motion. The resemblance between this structure and the ‘shock‘ terminating the flow reversal in 
the trough computations is deemed significant by the present authors. Smith and Elliott go on to 
link their non-linear breakdown to possible transition to turbulence and to the abrupt turbulent 
reattachment of marginal laminar separation that is often observed near aerofoil leading edges. 
These studies suggest that the nature of breakdown found in the present trough calculations with 
mesh refinement may represent a physical instability in the flow and may be indicative of incipient 
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transition to turbulence. Full three-dimensional claculations would be required to model this 
behaviour. 

In view of this possibility, a turbulence model was introduced into the calculations. The model 
employed was the two-layer model of Baldwin and Lomax.'O The turbulence appears in the 
governing equations through the coefficient of viscosity in equation (5) such that p = T" + Re pt, 
where pt is the eddy viscosity. The eddy viscosity model is assumed to obey Prandtl's mixing- 
length hypothesis in the inner layer, and it takes a form similar to the Clauser formulation in the 
outer layer. The advantage of the model over other algebraic eddy viscosity models is that it does 
not require evaluation of the displacement thickness of the boundary layer. More details of the 
model may be found in Reference 10. The eddy viscosity is uncoupled from the local inversion and 
is updated during local iterations to convergence. A streamwise intermittency factor was used to 
simulate the transition process. Transition was initiated at 5 = 2.15, i.e. just beyond the separation 
point. It is seen from Figure 14 that the turbulence greatly changes the nature of the solution. The 
dip in the skin friction is no longer present and the reattachment occurs within a much shorter 
distance. Moreover, this solution does not exhibit any 'instability' even for very fine grid solutions 
as obtained with the semi-coarsening multigrid procedure. The solution is computable on all grids 
considered herein; axial grid refinement from A< = 3/288 to A< = 3/576 does not alter the solution 
appreciably. The slight kink in the skin friction curve at its lowest point is due to the turbulence 
model. The computed eddy viscosity displays a small discontinuity at  that location. This is 
perhaps due to the appearance of double peaks in the vorticity function. 

Attention was next turned to the effect of boundary layer control with surface suction. Wall 
suction was simulated by replacing the u = 0 condition at  q = O  by u = us ,  where u, is an injection 
velocity in the q-direction. Although the 'suction' thus specified is in the q-direction and not 
normal to the surface, it will display the same qualitative features as normal suction. Figure 15 
displays the skin friction parameter versus axial distance for suction velocities of 0.002 and 0.003. 
It is seen that 0.002 is insufficient suction to remove the 'dip' in the curve, while 0.003 removes the 
flow separation altogether. As seen in Figures 16 and 17, a suction velocity of 0.0025 markedly 
changes the character of the separated flow without eliminating flow reversal. The pressure plot in 
particular shows that the separation region has a smoothly varying wall pressure at reattachment. 
This solution is obtained on a finer grid than was possible without the suction. With the multigrid 
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Figure 14. Trough: effect of turbulence 
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Figure 16. Trough effect of wall suction 

an be further refined to obtain solutions in an efficient and econ mic m nner. 
These results do not exhibit any essential change in the quantitative nature of the solution. This 
result, together with those for the turbulence model presented in the previous paragraph, reinforce 
the hypothesis that the breakdown found for the laminar computations is a physical rather than 
numerical instability, and occurs when the Reynolds number based on the depth of the trough is 
sufficiently large. Significantly, these results draw attention to the critical need for fine-mesh 
calculations and grid refinement studies in all computations of high-Re laminar separated flows. 

6. CONCLUSIONS 

The convergence properties of RNS global relaxation were examined with a very efficient semi- 
coarsening multigrid accelerator. Very fine axial meshes and highly stretched very fine surface- 
normal meshes were considered. Three techniques were proposed to enhance convergence of the 
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Figure 17. Trough: effect of wail suction 

RNS relaxation procedure, even for rather arbitrary starting conditions and without expensive 
initialization procedures. The use of temporal terms for underrelaxation, the use of preliminary 
inviscid flow iterations and of coarse-grid iteration to initialize the pressure field were each 
successful in eliminating divergence due to severe initial conditions for the flow past a sine-wave 
bump. The last two techniques also economically reduce the initial error for convergent 
computations and thereby greatly enhance the efficiency of convergence. 

The laminar flow over a deep trough of depth 0.06 and Re = 100 OOO was a severe test case. It was 
found that on a sufficiently fine streamwise grid a local breakdown occurred. Careful grid 
refinement studies could not remove this instability. Comparison of the calculated flow behaviour 
with Navier-Stokes and time-consistent RNS solutions, with experimental and other com- 
putational results for aerofoil leading-edge separation and with asymptotic analysis of marginal 
laminar separation leads to the belief that the breakdown is indicative of a physical instability. 
This instability occurs in even marginally separated flows and results in a shock-like reattachment. 
The instability is possibly indicative of incipient transition to turbulence. The introduction of a 
turbulence model beyond the separation point was found to suppress the instability. The 
application of small wall suction also removed the instability, even when the flow reversal was still 
present. These results underline the need for sufficient grid refinement in all high-Re laminar 
separated flow calculations. Full three-dimensional calculations would be required to capture the 
transition phenomenon, if in fact this is the driving mechanism resulting in the two-dimensional 
breakdown. 
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